ПATIBIA UПIVERSITY

OF SCIEПCE AПD TECHПOLOGY
FACULTY NAME:
NATURAL RESOURCES AND SPATIAL SCIENCES

DEPARTMENT NAME:
AGRICULTURE AND NATURAL RESOURCES SCIENCES

QUALIFICATION : BACHELOR OF AGRICULTURE	
QUALIFICATION CODE: O7BAGR	LEVEL: 5
COURSE: Introduction to Chemistry	COURSE CODE: ICA511S
DATE: 07 June 2019	SESSION: $18 \mathrm{H00}-21 \mathrm{H00}$
DURATION: 3 Hours	MARKS: 100

FIRST OPPORTUNITY EXAMINATION QUESTION PAPER	
EXAMINER(S)	Ms. Emma Elmary GAMROS
MODERATOR:	Mrs. Lucia Tuyeni-Kelao KAFIDI

INSTRUCTIONS

1. Answer ALL the questions.
2. Write clearly and neatly.
3. Number the answers clearly.

PERMISSIBLE MATERIALS

1. Examination paper.
2. Examination script.
3. Calculator

Section A: MULTIPLE CHOICE QUESTIONS

- There are 20 multiple choice questions in this section. Each question carries 2 marks.
- Answer ALL questions by selecting the letter of the correct answer.
- Choose the best possible answer for each question, even if you think there is another possible answer that is not given.

1. A vertical column (a group) of the Periodic table should have the same
A. atomic number
B. atomic mass number
C. electron number in the outer energy level
D. number of energy shells
E. valence
2. The maximum number of electrons that can be accommodated in the $n=3$ shell is
A. 27
B. 18
C. 16
D. 14
E. 12
3. The molar mass of $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$ is
A. 46.08 amu
B. 30.08 amu
C. 30.08 g
D. 46.08 g
E. 23.0 g
4. The number of molecules in $1.0 \times 10^{-6} \mathrm{~mol} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$ are
A. 6.0×10^{17}
B. 6×10^{17}
C. 6.0×10^{-17}
D. 6.0×10^{18}
E. 6.0×10^{-18}
5. Convert 0.000070 to standard scientific notation with correct number of significant figures.
A. 7×10^{-4}
B. 7.0×10^{-4}
C. 7×10^{-5}
D. 7.0×10^{-5}
E. 70×10^{-5}
6. What is the volume of a 0.0122 kg of metal with a density of $9.43 \mathrm{~g} / \mathrm{cm}^{3}$
A. $\quad 12.2 \mathrm{~cm}^{3}$
B. $\quad 1.29 \mathrm{~cm}^{3}$
C. $0.773 \mathrm{~cm}^{3}$
D. $0.00129 \mathrm{~cm}^{3}$
E. $\quad 9.43 \mathrm{~cm}^{3}$
7. How many electrons can be described by the following quantum numbers?

$$
\mathrm{n}=3, \mathrm{l}=2, \mathrm{ml}=-1, \mathrm{~ms}=+1 / 2
$$

A. 0
B. 1
C. 2
D. 3
E. 6
8. Which of the following are true statements about the Periodic Table?
A. Electronegativity increases from left to right
B. Ionisation energy decreases from left to right
C. Electronegativity increases from top to bottom
D. Both A and B above
E. A, B and C above
9. Use the following information to identify the atom or ion: 16 protons, 16 neutrons, and 14 electrons.
A. S^{2+}
B. O^{2-}
C. O^{2+}
D. S^{2-}
E. Ne
10. What is the electron configuration for the most stable ion of the element chlorine, ${ }_{17} \mathrm{Cl}$.
A. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}$
B. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{5}$
C. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{4}$
D. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 d^{6}$
E. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2}$
11. The element with atomic number 53 describes a
A. Metal
B. Halogen
C. Metalloid
D. Noble gas
12. What is the mass number of an atom of nitrogen that has 8 neutrons?
A. 8
B. 7
C. 14
D. 15
E. 16
13. Which of the following masses is the largest?
A. $\quad 0.200 \mathrm{~g}$
B. 0.020 kg
C. 20.0 mg
D. 2000 g
E. They are all equal
14. What element do all organic compounds contain?
A. C
B. H
C. 0
D. Fe
E. P
15. To what organic family does the following molecule belong?

$$
\mathrm{H}-\mathrm{C} \equiv \mathrm{C}-\mathrm{H}
$$

A. Alcohol
B. Alkyne
C. Ether
D. Carboxylic acid
E. Ester
16. The correct formula for aluminium nitrate is
A. Al 3 N 2
B. Al 3 NO 3
C. $\mathrm{Al}(\mathrm{NO} 2) 3$
D. $\mathrm{Al}(\mathrm{NO} 3) 3$
E. None of the above
17. Which element has exactly five electrons in the highest principal energy level (the outer shell)?
A. Se
B. Ba
C. P
D. Ge
E. None of the above
18. For the reaction below, how many moles of N 2 are required to produce 18 mol NH 3 ?
$\mathrm{N} 2+3 \mathrm{H} 2 \rightarrow 2 \mathrm{NH} 3$
A. 1
B. 9
C. 4
D. 18
E. 36
19. An isotope is an element whose atomic mass is made up of
A. Same proton number
B. Same number of neutrons
C. Same number of electrons
D. Number of neutron(s) plus the number of proton(s)
E. None of the above
20. White sugar and salt are
A. Homogenous mixture
B. Heterogeneous solution
C. Colloidal solutions
D. Suspensions
E. All of the above

Section B: STRUCTURED QUESTIONS

- There are TEN questions in this section. Answer all Questions.
- Show clearly, where necessary, how you arrive at the answer as the working will carry marks too.

QUESTION 1

[8]
Express the answer to each of the following problems with the correct number of significant figures.

$$
\begin{equation*}
1.1106 .23 \mathrm{~g}+70.0 \tag{2}
\end{equation*}
$$

$1.230 .70 \mathrm{~kg} \times 1.3 \mathrm{~m} \times 1.3 \mathrm{~m} /(60.0 \mathrm{~s} \times 60.0 \mathrm{~s})$
$1.30 .09121 \mathrm{~mm} \times 11.3 \mathrm{~mm}$
$1.40 .225 \mathrm{mg}-0.0667 \mathrm{mg}$

QUESTION 2

An atom of an element has two electrons in the $n=1$ shell, eight electrons in the $n=2$ shell, and five electrons in the $n=3$ shell. From this information, give for the element
2.1 its atomic number
2.2 its approximate atomic weight
2.3 the total number of s electrons in its atom
2.4 the total number of d electrons in its atom
2.5 the name of the element

QUESTION 3

[5]
Complete the following table by filling in the compound name or formula as required.

Name	Formula
Barium bromide	
Aluminium sulfide	
	MgO
	$\mathrm{KMnO4}$
Strontium nitride	

QUESTION 4

A much sought-after high explosive has the following composition: C, 20.7\%; N, 24.1 \%; O, 55.2\%. What is its empirical formula?

QUESTION 5

Calculate the following quantities:
5.1 Mass, in grams, of 0.105 moles sucrose ($\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$)
5.2 Moles of $\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}$ in 143.50 g of this substance

QUESTION 6

[3]
Sodium hydroxide reacts with carbon dioxide as follows:
$2 \mathrm{NaOH}_{(\mathrm{s})}+\mathrm{CO}_{2(\mathrm{~g})} \rightarrow \mathrm{Na}_{2} \mathrm{CO}_{3(\mathrm{~s})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$
Determine the limiting reagent when 1.85 mol NaOH and $1.00 \mathrm{~mol} \mathrm{CO}_{2}$ are allowed to react.

QUESTION 7

State whether the following statements are True of False. (1 mark each)
7.1 Acid should always be added to water when doing a dilution.
7.2 Gloves should be worn when working with toxic chemicals and hot glassware.
7.3 Sandals should never be worn in the laboratory.
7.4 Long, loose hair is a fire hazard.
7.5 Chemical waste should be disposed of down the sink unless told otherwise.
7.6 Long sleeves should be rolled up before working in the lab.
7.7 It is a safety violation to leave your lab area dirty.
7.8 It isn't hazardous to eat or drink in the lab if you've put all of the chemicals at your lab area away.

QUESTION 8

What is the maximum number of orbitals with:

$8.1 n=4$	$l=1$	
$8.2 n=2$	$l=2$	
$8.3 n=3$	$l=2$	
$8.4 n=5$	$l=1$	$m l=-1$

QUESTION 9

Balance the following equations
$9.1 \mathrm{CuOH}+\mathrm{Al}\left(\mathrm{NO}_{2}\right)_{3} \leftrightarrow \mathrm{CuNO}_{2}+\mathrm{Al}(\mathrm{OH})_{3}$
$9.2 \mathrm{NaHCO}_{3} \leftrightarrow \mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$
$9.3 \mathrm{C}_{4} \mathrm{H}_{8}+\mathrm{O}_{2} \leftrightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
$9.4 \mathrm{NaOH}+\mathrm{Li}_{2} \mathrm{SO}_{4} \leftrightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+\mathrm{LiOH}$
$9.5 \mathrm{AgNO}_{2}+\mathrm{Ni}_{2} \mathrm{O}_{3} \leftrightarrow \mathrm{Ag}_{2} \mathrm{O}+\mathrm{Ni}\left(\mathrm{NO}_{2}\right)_{3}$
$9.6 \mathrm{Zn}+\mathrm{AgNO}_{3} \leftrightarrow \mathrm{Ag}+\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}$

QUESTION 10

State the four quantum numbers, then explain the possible values they may have and what they actually represent.

Total Marks:

USEFUL CONSTANTS

Gas constant, $\mathrm{R}=8.3145 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$
$1 \mathrm{~atm}=101325 \mathrm{~Pa}=760 \mathrm{mmHg}=760$ torr
Avogadro's Number, NA $=6.022 \times 10^{23} \mathrm{~mol}^{-1}$
Planck's constant, $\mathrm{h}=6.626 \times 10^{-34} \mathrm{Js}$
Speed of light, $\mathrm{c}=2.998 \times 10^{8} \mathrm{~ms}^{-1}$
PERIODIC TABLE OF THE ELEMENTS

57	58	59	60	61	62	63	64	65	66	67	68	69	
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb
138.906	140.12	140.9	144.24	(145)	150.36	151.96	157.25	158.925	162.50	61.930	16726		Y

89	90	91	92	93	94	95	96	97	98	99	100	101	
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No
227.028	232.03	P1.036	238.02	237.048	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)

Lanthanides:

